
BIG DATA PROCESSING THE LEAN

WAY – A CASE STUDY
by Siegfried Steiner (steiner@comcodes.com)

19/08/14 – 17/01/21

mailto:steiner@comcodes.com

2

Content
 1.Preface...3
 2.Abstract...3
 3.The mission...4
 4.Terminology...5
 5.Constraints..6
 6.Approach...7
 7.Technology stack...8
 8.Development process..10

Excursus: Scrum...10
Excursus: Test-driven development..11

 9.Into the cloud: Scalability..12
Excursus: IPO Model...13

 1.Input - Receive requests (and process output)..14
Excursus: Front controller pattern..16
Excursus: Interceptor pattern...17

 2.Process – Log and store...17
Excursus: Composite pattern...18
Excursus: Partitioning and composition strategies.................................20

 3.Output – Query and retrieve..21
Excursus: Command pattern..24

 10.… and out of the cloud: Security...24
Excursus: Forward secrecy...27

 11.Herding cats: Resource management..27
Excursus: Repository pattern..28

 12.Software design and implementation..29
 1.Asynchronous calls..30
 2.Interface based programming...30

Excursus: Interface based programming..31
 3.Big data processing...31

Excursus: Big data housekeeping...32
 4.Application assembly...32
 5.Pattern and refactoring..33

 13.Conclusion...33
 14.Outlook..34

Outlook: Cloud API (CAPI)...35
 15.Epilogue...36

3

 1. PREFACE

In this case study, I use the present tense although everything took place in

the past – within the years 2012 and 2013. I decided to place footnotes even

for terms which might be considered generally known. Often terms are part of

a specific domain with which not everybody of the audience necessarily is

familiar with (a message selector1 in Smalltalk2 and a method signature3 in Java

can mean the same thing in their specific domain – a Java and a Smalltalk geek

talking though might misunderstand each other). My footnotes usually denote

secondary sources such as Wikipedia, which is not bullet proof from a scientific

point of view. Every term once put into a footnote is written in italic style. As

assuming something to be “secure” is already an error in reasoning, I put the

word “secure” consequently into quotes. Regarding the diagrams I use a “no

notation”, borrowing from different notations at random to get different

aspects such as structure and dynamics into a single self explanatory

visualization. In case you find new findings in this paper, then this is by

coincidence. This paper demonstrates on how to recombine “old wine in new

containers” effectively ...

 2. ABSTRACT

Nowadays big data4 seems to be everywhere: Monstrous amounts of data to be

piped through software systems5, to be digested by services6, to be fed back

into the circulation; for you to finally consume an individual view of the world.

In times of cloud computing7, putting your big data ideas into reality is no

rocket science any more, even for small development teams with no data

center8 at hands.

In this session I will introduce you a promising approach on how to cope with

1 Messages (Smalltalk), see http://en.wikipedia.org/wiki/Smalltalk#Messages (Wikipedia)
2 Smalltalk, see http://en.wikipedia.org/wiki/Smalltalk (Wikipedia)
3 Method signature, see http://en.wikipedia.org/wiki/Method_signature (Wikipedia)
4 Big data, see http://en.wikipedia.org/wiki/Big_data (Wikipedia)
5 Software system, see http://en.wikipedia.org/wiki/Software_system (Wikipedia)
6 Service, see http://en.wikipedia.org/wiki/Service_%28systems_architecture%29 (Wikipedia)
7 Cloud computing, see http://en.wikipedia.org/wiki/Cloud_computing (Wikipedia)
8 Data center, see http://en.wikipedia.org/wiki/Data_centre (Wikipedia)

http://en.wikipedia.org/wiki/Data_centre
http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/Service_(systems_architecture)
http://en.wikipedia.org/wiki/Software_system
http://en.wikipedia.org/wiki/Big_data
http://en.wikipedia.org/wiki/Method_signature
http://en.wikipedia.org/wiki/Smalltalk
http://en.wikipedia.org/wiki/Smalltalk#Messages

4

big data projects the lean way.

Managing big data in the cloud bears a highly dynamic runtime behaviour. This

is especially true, when costs matter: How to scale9 up and scale down your

cloud resource consumption? Which technology stack works promisingly well?

Which design patterns10 and software architectures11 are suitable? How to

populate and organize your software systems in this dynamic environment

without loosing track? How to retain a clear view of your services' and software

systems' health condition?

By dissecting a case study in this session, I'll introduce you a promising

approach on how to tackle those challenges using the Java ecosystem,

Amazon's AWS12 and NoSQL13 databases; in an agile working environment;

breaking down your software architecture into subtle bits and pieces to just put

the back together again.

 3. THE MISSION

Speaking in business terms, the mission taken for this case study is to improve

(boost) a webshop's customer acquisition numbers as well as tighten the

customer's loyalty with according services to be provided:

1. “Learn from the customers' journeys14 and their buying patterns”

2. “Optimize customer- and product proposal communication”

3. “Increase in sales and reduce in customer related costs”

Technically speaking the mission is on “put sensors into webshops' pages of

special interest and record the users' journeys (clicks) through those web

pages. Digest the recorded data to produce individual consumer profiles and

provide the webshops with individual feedback on those user profiles –

transaction based or batch based. “Provide” means to do it for many

9 Scalability, see http://en.wikipedia.org/wiki/Scalability (Wikipedia)
10 Design pattern, see http://en.wikipedia.org/wiki/Software_design_pattern (Wikipedia)
11 Software architecture, see http://en.wikipedia.org/wiki/Software_architecture (Wikipedia)
12 Amazon Web Services, see http://en.wikipedia.org/wiki/Amazon_Web_Services (Wikipedia)
13 NoSQL, see http://en.wikipedia.org/wiki/NoSQL (Wikipedia)
14 Customer Journey, see http://de.wikipedia.org/wiki/Customer_Journey (Wikipedia)

http://de.wikipedia.org/wiki/Customer_Journey
http://en.wikipedia.org/wiki/NoSQL
http://en.wikipedia.org/wiki/Amazon_Web_Services
http://en.wikipedia.org/wiki/Software_architecture
http://en.wikipedia.org/wiki/Software_design_pattern
http://en.wikipedia.org/wiki/Scalability

5

webshops, smaller and bigger ones”.

We are to provide the software system as a SaaS15 platform, supporting multi-

tenant capabilities, e.g. serving many different webshops. 1 Illustrates a

simplified view of the mission's set-up:

The tenants (1) attach their webshops (2) to the software system (3) being

implemented by the team (4). The customers' (5) journeys are analysed,

individual feedback is returned.

 4. TERMINOLOGY

For a better understanding of the case study, find below a set of terms and

their meaning in this lecture's context:

Customer A user visiting the webshop with the intention to buy one or
many products.

Product A commodity offered for sale by the tenant's webshop.

Software system The result of the mission; to be designed and implemented.

Tenant A company or an individual operating a webshop.

Webshop The tenant's webshop being attached to our software

15 Software as a Service, see http://en.wikipedia.org/wiki/Software_as_a_service (Wikipedia)

Figure 1: A rough impression on the mission's set-up.

http://en.wikipedia.org/wiki/Software_as_a_service

6

system.

Team The bunch of developers and executives being on the
mission.

 5. CONSTRAINTS

There are many possible ways getting a solution done for a an undertaking. A

promising approach chosen depends on the overall circumstances and

constraints. In this case study, the actual business model is not finally settled

yet, therefore we have to cope with moving targets. Depending on how you

and your company is positioned, you will be confronted with a given set of

specific constrains which you might be able to influence within very narrow

limits only. The constraints below are considered to have influenced some of

my architectural decisions:

Mission We are confronted with moving targets in the given context
of webshop optimization. We are entering uncharted
territory as of big data processing by a small company.

Market As the market is not well known yet, we have no valid
metrics on the volume of data to expect and the required
scaling of the underlying software systems.

Organization The company to build the software system for is a startup
alike company with restricted budget and short time-to-
market requirements.

Team The development team's size varies between five to eight
developers including a nearshoring team in Novi Sad
(Serbia).

Skills The team has excellent Java knowledge and architectural
skills, though no cloud computing and big data experience

Methodology The development methodology is an agile orientated one,
inspired by Scrum16, though no real Scrum master is on
board.

Burden The software system is to inherited a REST17

(Representational state transfer) alike HTTP18 (Hypertext
Transfer Protocol) interface from a third-party software
system.

16 Scrum, see http://en.wikipedia.org/wiki/Scrum_%28software_development%29 (Wikipedia)
17 REST (representational state transfer), see http://en.wikipedia.org/wiki/REST (Wikipedia)
18 HTTP, see http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol (Wikipedia)

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/Scrum_(software_development)

7

 6. APPROACH

As the context of the mission is more or less clear, though still keeping room for

surprises, some systematic and still flexible software architecture is to be set

up for the software system. As of the uncertainty regarding the data loads we

will be confronted with, we need to be scalable throughout all aspects of our

software system. As of time-to-market constraints, each target of the mission

moving must not endanger the overall effort. The software architecture must

be flexible enough to cope with short term changes without tearing down the

whole software system.

A clever software architecture expects changes and provides room for them

within its given domain without breaking the overall software system

As of restricted development resources, parts of the software system should do

their job in various contexts.

… this led to the decision to set up a software architecture based on the IPO

Model19 (“Input – Process – Output”) using the composite pattern20 in

combination with the interceptor pattern21 when embedded into a front

controller pattern22. All of them together applied with the interface based

programming23 approach, organized using the repository pattern24 ...

In case you got confused, those paradigms, amongst others, will be intensified

in below sections.

To keep everything lean, we make extensive use of Software as a Service

(SaaS)15 services supporting the development process and Platform as a

Service (PaaS)25 services hosting and operating our software system in terms of

19 IPO Model, see http://en.wikipedia.org/wiki/IPO_Model (Wikipedia)
20 Composite pattern, see http://en.wikipedia.org/wiki/Composite_pattern (Wikipedia) and

http://01853.cosmonode.de/index.php/Composite_Pattern
21 Interceptor pattern, see http://en.wikipedia.org/wiki/Interceptor_pattern (Wikipedia)
22 Front Controller, see http://en.wikipedia.org/wiki/Front_Controller_pattern (Wikipedia)
23 Interface based programming, see http://en.wikipedia.org/wiki/Interface-

based_programming (Wikipedia) and http://01853.cosmonode.de/index.php/
Interfacebasierte_Programmierung

24 Repository pattern, see http://01798.cosmonode.de/index.php/Repository_pattern
25 Platform as a Service, see http://en.wikipedia.org/wiki/Platform_as_a_service (Wikipedia)

http://en.wikipedia.org/wiki/Platform_as_a_service
http://01798.cosmonode.de/index.php/Repository_pattern
http://01853.cosmonode.de/index.php/Interfacebasierte_Programmierung
http://01853.cosmonode.de/index.php/Interfacebasierte_Programmierung
http://01853.cosmonode.de/index.php/Interfacebasierte_Programmierung
http://en.wikipedia.org/wiki/Interface-based_programming
http://en.wikipedia.org/wiki/Interface-based_programming
http://en.wikipedia.org/wiki/Front_Controller_pattern
http://en.wikipedia.org/wiki/Interceptor_pattern
http://01853.cosmonode.de/index.php/Composite_Pattern
http://en.wikipedia.org/wiki/Composite_pattern
http://en.wikipedia.org/wiki/IPO_Model

8

cloud computing.

 7. TECHNOLOGY STACK

The technologies chosen to develop and build up the software system are quite

straight forward:

Java26 A software platform27 and programming language28 coming
with a wide variety of free and open source29 development
tools and frameworks30; providing us a big ecosystem.

Tomcat31 A Java based open source web container32 managed by the
Apache Software Foundation33, hosting our software
system's REST alike interface and attaching it to the web.

Spring34 A framework in the Java ecosystem providing us with
transaction processing35 and dependency injection36 without
having to carry around a heavy weight application server37.

MySQL38 A relational database management system39 (RDBMS) used
for critical data requiring consistency such as machine,
service and tenant management.

Maven40 Our build automation41 tool with dependency and version
management capabilities for software components42; Maven
is managed by the Apache Software Foundation.

As of our lean approach, the technology stack includes external cloud services

provided as PaaS, mainly Amazon Web Services:

26 Java, see http://en.wikipedia.org/wiki/Java_%28software_platform%29 (Wikipedia)
27 Computing platform, see http://en.wikipedia.org/wiki/Computing_platform (Wikipedia)
28 Programming language, see http://en.wikipedia.org/wiki/Programming_language (Wikipedia)
29 Open source, see http://en.wikipedia.org/wiki/Open_source (Wikipedia)
30 Framework, see http://en.wikipedia.org/wiki/Software_framework (Wikipedia)
31 Apache Tomcat, see http://en.wikipedia.org/wiki/Apache_Tomcat (Wikipedia)
32 Web container, see http://en.wikipedia.org/wiki/Web_container (Wikipedia)
33 Apache Foundation, see http://en.wikipedia.org/wiki/Apache_Foundation (Wikipedia)
34 Spring Framework, see http://en.wikipedia.org/wiki/Spring_Framework (Wikipedia)
35 Transaction processing, see http://en.wikipedia.org/wiki/Transaction_processing(Wikipedia)
36 Dependency injection, see http://en.wikipedia.org/wiki/Dependency_injection (Wikipedia)
37 Application server, see http://en.wikipedia.org/wiki/Application_server (Wikipedia)
38 MySQL, see http://en.wikipedia.org/wiki/MySQL (Wikipedia)
39 RDBMS, see http://en.wikipedia.org/wiki/Relational_DBMS (Wikipedia)
40 Apache Maven, see http://en.wikipedia.org/wiki/Apache_Maven (Wikipedia)
41 Build automation, see http://en.wikipedia.org/wiki/Build_automation (Wikipedia)
42 Component-based software engineering, see http://en.wikipedia.org/wiki/Component-

based_software_engineering (Wikipedia)

http://en.wikipedia.org/wiki/Component-based_software_engineering
http://en.wikipedia.org/wiki/Component-based_software_engineering
http://en.wikipedia.org/wiki/Build_automation
http://en.wikipedia.org/wiki/Apache_Maven
http://en.wikipedia.org/wiki/Relational_DBMS
http://en.wikipedia.org/wiki/MySQL
http://en.wikipedia.org/wiki/Application_server
http://en.wikipedia.org/wiki/Dependency_injection
http://en.wikipedia.org/wiki/Transaction_processing
http://en.wikipedia.org/wiki/Spring_Framework
http://en.wikipedia.org/wiki/Apache_Foundation
http://en.wikipedia.org/wiki/Web_container
http://en.wikipedia.org/wiki/Apache_Tomcat
http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Computing_platform
http://en.wikipedia.org/wiki/Java_(software_platform)

9

S3 The Simple Storage Service (S3) from Amazon's AWS
provides us with file storage for flat files.

SimpleDB An AWS NoSQL database for feeding the vast amounts of
traffic data into the persistence layer.

RDS The AWS Relational Database Service (RDS) provides us our
MySQL instances84 for managing the inventory43.

EC2 The AWS Elastic Compute Cloud (EC2) provides virtual
machines44, in our case running Linux45 operating system46.

Elastic Load
Balancing

The AWS load balancer47 is used for load balancing our
incoming vast amounts of traffic data.

2 Illustrates the technology stack: The software system consists of a load

balancer, virtual machines and NoSQL databases as well as relational

databases:

43 Inventory, see chapter 11 Herding cats: Resource management on page 27
44 Virtual machine, see http://en.wikipedia.org/wiki/Virtual_machine (Wikipedia)
45 Linux, see http://en.wikipedia.org/wiki/Linux (Wikipedia)
46 Operating System (OS), see http://en.wikipedia.org/wiki/Operating_system (Wikipedia)
47 Load balancing, see http://en.wikipedia.org/wiki/Load_Balancer (Wikipedia)

Figure 2: A high level overview of the system landscape

http://en.wikipedia.org/wiki/Load_Balancer
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Virtual_machine

10

The Elastic Load Balancer attaches the software system to the internet48 and

receives the attached webshops' HTTP requests (1). The EC2 virtual machines

run Linux with a Tomcat on top, which processes the HTTP requests, digests the

data and feeds the SimpleDB domains (2). The SimpleDB domains49 hold the

digested data from the webshops for processing by subsequent steps (3). The

RDS' MySQL instances provide the inventory's management and configuration

information – on the machines and services related to the tenants managed by

the software system (4).

 8. DEVELOPMENT PROCESS

The development team is split up into two parts, an on-site team in Munich and

a nearshoring50 team in Novi Sad, we make a conference call every day. As of

our lean approach, we decide to use a cloud based SaaS tool-set, namely

Assembla51, providing us with task and code management facilities. Working

with distributed teams, SaaS tools are most useful by eliminating the hassle of

setting up a distributed development environment manually.

Excursus: Scrum

Regarding Scrum, Wikipedia says: “... A key principle of Scrum is its
recognition that during a project the customers can change their minds about
what they want and need ..., and that unpredicted challenges cannot be
easily addressed in a traditional predictive or planned manner ...”16.

Agile does not mean “chaotic” or “unplanned”, it actually enforces a well
defined process with a set of roles, rules and tools to be applied to
successfully challenge moving targets in the life cycle of your project.

Our development process52 is supported by a SaaS tool-set consisting of:

• A task management tool

48 Internet, see http://en.wikipedia.org/wiki/Internet (Wikipedia)
49 SimpleDB domain, see http://aws.amazon.com/simpledb/faqs (Amazon SimpleDB FAQs)
50 Nearshoring, see http://en.wikipedia.org/wiki/Nearshoring (Wikipedia)
51 Assembla, see https://www.assembla.com (Assembla)
52 Software development process, see http://en.wikipedia.org/wiki/Software_development _

process (Wikipedia)

http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Software_development_process
https://www.assembla.com/
http://en.wikipedia.org/wiki/Nearshoring
http://aws.amazon.com/simpledb/faqs
http://en.wikipedia.org/wiki/Internet

11

• Git53 code repositories (a version control system54)

• Agile project management including an agile planner

• Work-flows for code life cycle55 management (such as in progress, ready-

for-test or tested process lanes)

• User management and time tracking

The development process itself is backed by an agile methodology and test-

driven development56 (TDD): A Scrum alike agile development process for team

organization and gray-box testing57 for automated unit testing58 using JUnit59.

Excursus: Test-driven development

Gray-box testing is the test driven development56 approach we have chosen.
There are different understandings on gray-box testing57, let's start off with
black-box testing60 and white-box testing61:

With white-box testing, the internal structure of the code to be tested is
known, as if you were to write unit tests after you programmed the code.
With black-box testing, just the interface62 is known by the tester, tests are
written before the code behind the interface is being programmed; the tester
and the programmer63 are different people.

With gray-box testing, as we understand it in this case study, you write the
unit tests for an interface before you program the code (tester and
programmer are the same individuals). We assume this to be an acceptable
compromise between the black-box testing and the white-box testing
paradigms in a startup alike context.

Using lean task and code management tools “from the cloud” keeps costs low

in the beginning (similar to outsourcing the data center in terms of SaaS and

53 Git, see http://en.wikipedia.org/wiki/Git_%28software%29 (Wikipedia)
54 Revision control, see http://en.wikipedia.org/wiki/Revision_control (Wikipedia)
55 Software release life cycle, see http://en.wikipedia.org/wiki/Software_release_life_cycle

(Wikipedia)
56 TDD, see http://en.wikipedia.org/wiki/Test_driven_development (Wikipedia)
57 Gray-box testing, see http://en.wikipedia.org/wiki/Gray_box_testing (Wikipedia)
58 Unit testing, see http://en.wikipedia.org/wiki/Unit_testing (Wikipedia)
59 JUnit, see http://en.wikipedia.org/wiki/JUnit (Wikipedia)
60 Black-box testing, see http://en.wikipedia.org/wiki/Black_box_testing (Wikipedia)
61 White-box testing, see http://en.wikipedia.org/wiki/White-box_testing (Wikipedia)
62 Interface, see http://en.wikipedia.org/wiki/Interface_%28object-oriented_programming%29

(Wikipedia)
63 Programmer, see http://en.wikipedia.org/wiki/Programmer (Wikipedia)

http://en.wikipedia.org/wiki/JUnit
http://en.wikipedia.org/wiki/Programmer
http://en.wikipedia.org/wiki/Interface_(object-oriented_programming)
http://en.wikipedia.org/wiki/White-box_testing
http://en.wikipedia.org/wiki/Black_box_testing
http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/Gray_box_testing
http://en.wikipedia.org/wiki/Test_driven_development
http://en.wikipedia.org/wiki/Software_release_life_cycle
http://en.wikipedia.org/wiki/Revision_control
http://en.wikipedia.org/wiki/Git_(software)

12

PaaS services).

 9. INTO THE CLOUD: SCALABILITY

As of the mission, many requests and data chunks are to be received via HTTP

within acceptable response times64 by the software system. Selected

operations of a customer (who is identified e.g. by a cookie65) navigating an

attached webshop each produces a request to our software system, answered

by the software system with an according individual response.

A request may identify a product being placed in a customer's shopping basket

or a customer viewing product details. All of those operations of a single user

are called customer journey. An individual response by the software system

means producing feedback to the customer, based on the individual

64 Acceptable Response Times, see http://www.webperformancematters.com/journal/2007/7/
10/acceptable-response-times.html (Web Performance Matters)

65 HTTP cookie, see http://en.wikipedia.org/wiki/HTTP_cookie (Wikipedia)

Figure 3: The IPO Model in general, being applied to the software system

http://en.wikipedia.org/wiki/HTTP_cookie
http://www.webperformancematters.com/journal/2007/7/10/acceptable-response-times.html
http://www.webperformancematters.com/journal/2007/7/10/acceptable-response-times.html
http://www.webperformancematters.com/journal/2007/7/10/acceptable-response-times.html

13

customer's journey.

Receiving a single request and producing an individual response is to take

place within ¼th of a second66. The software system actually receives several

thousand requests per second. This in turn means that the data chunks are to

be digested by the software system accordingly quick.

Simplifying matters, the basic principle processing the incoming data is

represented by the IPO Model (as of Input – Process – Output):

1. Input: Receive the requests (and process output)

2. Process: Log and store the structured data

3. Output: Query and retrieve logs (for processing by succeeding systems)

In the real world things are more complicated, we actually apply the IPO Model

to the Input step as well (in this context, replacing “Input“ with “IPO“, we could

call it “IPOPO Model“), explaining why we process output in the Input step.

Excursus: IPO Model

Actually, the IPO Model19 is one of the most fundamental recurring fractals85

in information technology67 and computer science68. Each method69 receives
input and processes output. The IPO Model denotes nothing more than that
operations can be split into three steps: Input, Process and Output. In data
warehousing70, the IPO Model is called ETL71 (for extract, transform and load).

In their atomic structure, most software systems are build up of IPO Model
artefacts – such as methods, Java Servlets or pipes and filters72 – some of
them reflect the IPO Model also in their overall software architecture.

As of the three Input – Process – Output steps, the software system is

separated into three sub-systems (3), each of which being modularized. The

sub-systems each are to scale and provide flexibility as well as room for

66 Some marketing guy knows someone from an adverser company who says so ...
67 Information technology, see http://en.wikipedia.org/wiki/Information_technology (Wikipedia)
68 Computer science, see http://en.wikipedia.org/wiki/Computer_science (Wikipedia)
69 Method, see http://en.wikipedia.org/wiki/Method_%28computer_science%29 (Wikipedia)
70 Data warehouse, see http://en.wikipedia.org/wiki/Data_warehouse (Wikipedia)
71 ETL, see http://en.wikipedia.org/wiki/Extract,_transform,_load (Wikipedia)
72 Pipeline, see http://en.wikipedia.org/wiki/Pipeline_%28software%29 (Wikipedia); Pipe and

filter pattern, see http://01798.cosmonode.de/index.php/Pipe_and_filter_pattern

http://01798.cosmonode.de/index.php/Pipe_and_filter_pattern
http://en.wikipedia.org/wiki/Pipeline_(software)
http://en.wikipedia.org/wiki/Extract,_transform,_load
http://en.wikipedia.org/wiki/Data_warehouse
http://en.wikipedia.org/wiki/Method_(computer_science)
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Information_technology

14

extensions.

Without an own data center, we operate the software system using web

services73 from the AWS cloud – all of which is backed by the software

architecture.

 1. Input - Receive requests (and process output)

As said before, the overall Input step itself is divided into the three IPO Model's

sub-steps Input, Process and Output. The overall Input step is to process loads

of incoming HTTP requests, do pre-processing in its Processing sub-step and

produce HTTP responses in its Output sub-step. The overall Input step then

passes the now structured data elements to the overall Process step. Let us

take a closer look at the overall Input step:

1. Input: Receive + respond

1. (Sub-) Input: Receive loads of HTTP requests

2. (Sub-) Process: Pre-process the HTTP requests

3. (Sub-) Output: Produce HTTP responses

2. Process: Log + store

3. Output: Query + retrieve

Technically speaking, the HTTP requests and the HTTP responses are handled

by a front controller (represented by a Java Servlet74, a basic web container)

dissected into many interceptors21 assembled by means of the composite

pattern20.

As seen in 4, we have a front controller constructed of multiple nested

interceptors: Step 1 (“begin”) is the connection receiving HTTP requests and

step 5 (“end”) is the connection passing back HTTP responses – in between

refining the HTTP request, done in stages 2, 3 and 4. The outgoing connection

“Process“ is directed to incoming connection “Input” of the next overall

73 Web service, see http://en.wikipedia.org/wiki/Web_service (Wikipedia)
74 Java Servlet, see http://en.wikipedia.org/wiki/Java_Servlet (Wikipedia)

http://en.wikipedia.org/wiki/Java_Servlet
http://en.wikipedia.org/wiki/Web_service

15

Process step (5).

The data being passed from the overall Input step to the overall Process step is

normalized in terms of heterogeneous input data being unified and

consolidated and assigned a unique tenant's (webshop's) identifier.

In this case study, the front controller is nothing more than a composite

interceptor. A composite interceptor is composed of interceptor components

which may be atomic (a real interceptor with an own implementation, for

example parsing the HTTP request and producing normalized data or logging

Figure 4: The Input step of the IPO Model in detail

16

statistical information on the incoming load) or nested composite interceptors.

Alternate implementations exist for the composite interceptor, varying in their

behaviour, mainly in the decision, which interceptors are to be invoked in any

case and which interceptors are to be skipped in case of errors (such as a

malformed request).

Excursus: Front controller pattern

As of Wikipedia, “... Front controllers are often used in web applications to
implement workflows. While not strictly required, it is much easier to control
navigation across a set of related pages ... from a front controller than it is to
make the individual pages responsible for navigation...”22

The front controller pattern in this case study consists of exactly one
software component being the entry point of our web application. All HTTP
requests entering the web application are picked up by the front controller.
The front controller then dispatches the HTTP request for further processing
or enriches it with aspects75 – similar to AOP (aspect-oriented programming).

In this case study, the font controller makes use of the interceptor pattern to
add aspects to the HTTP requests as well as to dispatch processing of the
HTTP requests accomplished by the according HTTP responses.

The front controller is assembled of the three composite interceptors

2. pre-process (non-functional76 aspects)

3. process (functional77 aspects)

4. post-process (non-functional aspects)

The composite interceptor representing the front controller is always to process

the pre-process interceptors and the post-process interceptors, the process

interceptors' execution is to be aborted in case of errors (no succeeding

process interceptors are invoked).

Generally speaking, the pre-process and the post-process interceptors handle a

request's non-functional aspects whereas the process interceptors address

functional operations.

75 AOP, see http://en.wikipedia.org/wiki/Aspect-oriented_programming (Wikipedia)
76 Non functional, see http://en.wikipedia.org/wiki/Non-functional_requirement (Wikipedia)
77 Functional, see http://en.wikipedia.org/wiki/Functional_requirement (Wikipedia)

http://en.wikipedia.org/wiki/Functional_requirement
http://en.wikipedia.org/wiki/Non-functional_requirement
http://en.wikipedia.org/wiki/Aspect-oriented_programming

17

As seen above, the front controller actually combines the front controller

pattern with the interceptor pattern and the composite pattern.

Excursus: Interceptor pattern

The interceptor pattern21 is used when an operation's sequential execution
may differ depending on the operation's incoming messages78. The
interceptor pattern chains software components in a sequence – the
interceptors – one after the other. An incoming message is passed to the first
interceptor in the chain, in case it feels responsible for the message, it
executes and terminates the chain, else the message is passed to the next
interceptor; till an interceptor feels responsible or the message has passed
the last interceptor.

This makes it particular suitable inside a front controller pattern. Here the
messages are the HTTP requests. Depending on the kind of request being
received, an interceptor takes over, does its processing and contributes to
the HTTP response. In this special case study, we have different kinds of
interceptors: The composite interceptors and the atomic interceptors.

An atomic interceptor is a plain interceptor doing its work. A composite
interceptor contains other interceptors, being composite or atomic
interceptors. A composite interceptor may delegate to its contained
interceptors just one after the other or it may apply rules such as the first
interceptor and the last interceptor being pre-process and post-process steps
always to be executed. Also type conversion could take place inside a
compound interceptor so that the therein contained interceptors process on
transformed data types (as of generic programming79). A composite
interceptor could also always invoke each therein contained interceptor – no
matter whether an interceptor feels responsible or not – in this way
establishing an assembly line.

In case you want to scale, make sure that your interceptors are stateless80, it
makes things easier – you might need sticky sessions81 else and your
software system in turn may tend to become a monolithic system82 (bad).

 2. Process – Log and store

The normalized outcome of the Input step's “Process” connection (4) is passed

to the overall Process step's “Input” connection (5). The normalized data is a

result of the refinement of a customer's journey on a tenant's webshop. Let us

78 Message, see http://en.wikipedia.org/wiki/Message (Wikipedia)
79 Generic programming, see http://en.wikipedia.org/wiki/Generic_programming (Wikipedia)
80 Stateless protocol, see http://en.wikipedia.org/wiki/Stateless_protocol (Wikipedia)
81 Sticky sessions, also known as session affinity, used in the context of load balancing47

82 Monolithic system, see http://en.wikipedia.org/wiki/Monolithic_system (Wikipedia)

http://en.wikipedia.org/wiki/Monolithic_system
http://en.wikipedia.org/wiki/Stateless_protocol
http://en.wikipedia.org/wiki/Generic_programming
http://en.wikipedia.org/wiki/Message

18

take a closer look at the overall Process step:

1. Input: Receive + respond

2. Process: Log + store

1. Partitioned logging

2. Composite logging

3. SimpleDB logging

3. Output: Query + retrieve

As easily can be seen, the overall Process step of the case study addresses the

logger system (5). Similar to the Input step's front controller, it is designed with

the composite pattern in mind:

Excursus: Composite pattern

As of Wikipedia, “... The composite pattern describes that a group of objects83

is to be treated in the same way as a single instance84 of an object ...”20.

Simply speaking, you define an interface for a software component for which
you implement one ore more atomic components (“real” implementations of
the business logic) as well as at least one composite component. The
composite component contains objects implementing that interface and
delegates method calls to the according methods of the therein contained
objects; either your atomic components or other composite components.
That way you can create arbitrary nested such structures.

As it is irrelevant from your business logic's point of view whether it “talks” to
a composite object or its atomic counterpart – as they share the same
interface – the composite pattern is especially interesting regarding
scalability. This way you can parallelize operations defined in your interface –
your software system stays slim, testable and maintainable. Furthermore,
depending on the load you are experiencing, you can increase or decrease
the number of instances being encapsulated in your composite component.

The overall logger system is represented by parted loggers, themselves being

composed of composite loggers, which themselves delegate to atomic loggers

(a real logger with an own implementation towards SimpleDB domains).

83 Object, see http://en.wikipedia.org/wiki/Object_%28computer_science%29 (Wikipedia)
84 Instance, see http://en.wikipedia.org/wiki/Instance_%28computer_science%29 (Wikipedia)

http://en.wikipedia.org/wiki/Instance_(computer_science)
http://en.wikipedia.org/wiki/Object_(computer_science)

19

Looking closer at the parted loggers and the composite loggers, we can identify

the composite pattern – the fractal85 of this software system. Here again, we

have a nested composite structure, possible configurations may be any

combination of parted loggers, composite loggers and atomic loggers.

As many webshops are managed by the software system, many requests from

many customers of many tenants are to be handled efficiently.

Dissecting the logger system as of 5, we notice a parted logger (1) being the

top logger acting as the logger's entry point. At first, the normalized data from

the overall Input step is inspected by the parted logger for a partitioning86

criteria. In our case, the partitioning criteria is represented by a (unique)

tenant's identifier provided by the normalized data from the front controller.

Depending on the tenant's identifier (e.g. from which tenant's webshop did a

customer trigger a request), the normalized data from the Input connection is

85 Fractal, see http://en.wikipedia.org/wiki/Fractal (Wikipedia)
86 Partition (database), see http://en.wikipedia.org/wiki/Partition_%28database%29 (Wikipedia)

Figure 5: The Process step of the IPO Model in detail

http://en.wikipedia.org/wiki/Partition_(database)
http://en.wikipedia.org/wiki/Fractal

20

delegated by the parted logger to one of its underlying composite loggers (2).

Each composite logger receives all the normalized data for exactly one tenant's

requests. To scale up the load of an individual tenant, the composite logger for

a tenant delegates the normalized data loads round robin – by asynchronous

method dispatch (AMD)87 aka asynchronous I/O88 – to one of its nested atomic

loggers (3), each of which attached to its own Simple DB domain. This way the

the number of tenants cannot affect an individual composite logger's

throughput.

Excursus: Partitioning and composition strategies

The parted logger actually applies the principle of database shards89, each
tenant’s composite logger is one dedicated shard, the tenant's identifier
being the criteria for which shard to address. The composite loggers actually
apply plain horizontal partitioning86, a shard in this use case is actually
horizontally partitioned.

Determining the most efficient partitioning criteria and therewith structure of
parted loggers, composite loggers and the number of atomic loggers down
the data sinks is a science in itself. You have to know various factors on your
business domain, such as the expected load, the composition of your data,
the locations and according volumes of your data's origin, costs such as
transfer times, response times and transport fees regarding the location ...
just to mention some of them, in order to identify promising partitioning
criteria candidates or the number of atomic loggers per partition. Things get
more complicated when you choose a different nested loggers structure. One
may start by observation and adjustments regarding the logger set-up.

Using the composite pattern enables us to scale up or down regarding on the
actual load we are experience. Customers may expect lots of traffic during
Christmas time and decreasing load in summer time: The composite logger
can take this into account and attach or detach atomic loggers as required.

To relieve the top parted logger when the number attached tenants increases,

several parted loggers may be put in parallel, each of which receiving its HTTP

requests from a load balancer or from dedicated (parted logger specific) URLs90

(uniform resource locator).

87 AMD, see http://en.wikipedia.org/wiki/Asynchronous_method_dispatch (Wikipedia)
88 Asynchronous I/O, see http://en.wikipedia.org/wiki/Asynchronous_I/O (Wikipedia)
89 Shard, see http://en.wikipedia.org/wiki/Shard_%28database_architecture%29 (Wikipedia)
90 URL, see http://en.wikipedia.org/wiki/Uniform_resource_locator (Wikipedia)

http://en.wikipedia.org/wiki/Uniform_resource_locator
http://en.wikipedia.org/wiki/Shard_(database_architecture)
http://en.wikipedia.org/wiki/Asynchronous_I/O
http://en.wikipedia.org/wiki/Asynchronous_method_dispatch

21

The actual partitioning and composition structure chosen for this case study is

straight forward: A tenant's identifier offers itself for charging tenants

individually depending on their individual resource consumption. Therefore the

top logger is a parted logger having a tenant's identifier as partitioning criteria.

Using composite loggers per tenant underneath rises the throughput per

tenant: We assume that the expressions querying a tenant's data are

heterogeneous so that all atomic loggers for a tenant are to be queried.

Therefore partitioning in this layer would make things complicated without a

benefit. As of the moving targets, the partitioning criteria in this layer would

also be volatile soon.

Our first throw regarding the loggers structure is actually a strike, enabling to

log 5.000 to 7.000 HTTP requests per second and tenant91.

 3. Output – Query and retrieve

The Process step of the IPO Model results in structured data stored by various

SimpleDB instances in the cloud. Succeeding processing or analysis steps, such

as feeding a data warehouse92 or further processing and refinement, query and

retrieve the data from the SimpleDB instances via the logger system. The

querying mechanism is to be quite flexible, automatic or human analysts are to

fire ever changing queries into the logger system (as of the moving targets, the

targeted result-set is not yet settled upon).

Let us take a closer look at the overall Output step:

1. Input: Receive + respond

2. Process: Log + store

3. Output: Query + retrieve

The overall Output step is realized by a tool-set being reflected by a console

application93; embeddable in various succeeding automatic or manual

processes. As of the requirements to provide flexible querying mechanisms as

91 Me: “... my system administrator told me that that's about the throughput...”
92 Data warehouse, see http://en.wikipedia.org/wiki/Data_warehouse (Wikipedia)
93 Console application, see http://en.wikipedia.org/wiki/Console_application (Wikipedia)

http://en.wikipedia.org/wiki/Console_application
http://en.wikipedia.org/wiki/Data_warehouse

22

well as support of not yet thought of requirements, the following decisions are

made:

a) Provide a simple and dynamic sentential logic94 based querying

“language” interpreted (translated) by our tool-set.

b) Provide a modular design of the tool-set's console application; as

requirements may change during the development phase.

Regarding the sentential logic based querying “language”, on purpose we do

not use SimpleDB's query language: We never know in which way SimpleDB

will evolve, whether we will stay with SimpleDB or move on to another

technology. Using SimpleDB's query language whilst evolving to another

technology would break our software system.

Regarding the modular design of the console application, a modification of the

command pattern95 is being applied (6): An additional context96 is passed to the

execute methods of the individual commands.

The context, constructed by the console application, includes the command

line arguments as well as access to the software system's functionality, being

the logger system and the inventory.

The console application is divided into a set of commands. As long as a

command obeys defined criteria, it can be added to the console application (for

example expecting the context in its execute method). Each command is

invoked with the context by the console application, one by one. Depending

whether the command detects its responsibility for the given command line

arguments (passed in the context), it executes and signals to exit the console

application afterwards. If a command is not responsible for the given command

line arguments, control is passed to the succeeding command.

As of 6, command line arguments are passed to the console application (1).

The console application constructs a context including the command line

94 Propositional calculus, see http://en.wikipedia.org/wiki/Propositional_calculus (Wikipedia)
95 Command pattern, see http://en.wikipedia.org/wiki/Command_pattern (Wikipedia)
96 Context, see http://en.wikipedia.org/wiki/Context_%28computing%29 (Wikipedia)

http://en.wikipedia.org/wiki/Context_(computing)
http://en.wikipedia.org/wiki/Command_pattern
http://en.wikipedia.org/wiki/Propositional_calculus

23

arguments. The context is passed to the first command (2) which evaluates the

command line arguments: in case the command is responsible, it executes by

applying operations on the passed context (e.g. on the logger system or the

inventory) – finally execution of the console application terminates (3). In case

the command is not responsible for the passed command line arguments,

control is passed to the next command (4). This chain of responsibility is

continued till a command takes over responsibility or till there are no more

commands left in the chain (10).

As of separation of concerns97, the console application takes care of command

line argument parsing, context creation, help functionality or error handling

97 Separation of concerns, see http://en.wikipedia.org/wiki/Separation_of_concerns (Wikipedia)

Figure 6: The Output step of the IPO Model in detail

http://en.wikipedia.org/wiki/Separation_of_concerns

24

while the commands implement the actual business functionality. This way we

can react to moving targets without breaking things.

Excursus: Command pattern

As of Wikipedia, “... the command pattern is a … pattern in which an object is
used to represent and encapsulate all the information needed to call a
method at a later time. This information includes the ... method
parameters...”95. A command can be seen as a method and its context
(variables98) all transformed to an object. Having such an object, a command
can be executed at any time in the future, it can be placed on a stack99 or it
can be transferred throughout software system boundaries.

In this case study, we used the command pattern merely to keep the console
application maintainable and expandable as the console application is set up
of a set of dedicated commands. The commands share the same interface
and are provided with a context by the console application – consisting of the
logger system and the inventory. To keep the boilerplate100 small when
adding new functionality to the console application, the console application
itself is the boilerplate. It parses the command line arguments101 from the
command-line interface (CLI), constructs the context, instantiates the
commands and invokes the command as specified by the command line
arguments.

Commands offer you funny possibilities: Given you define a command's
interface providing an “execute” and an “undo” method and your software
system strictly makes use of commands, then you easily can provide undo102

functionality by putting your executed commands onto a stack, where they
are just waiting for having their “undo” method called in reverse order.

 10. … AND OUT OF THE CLOUD: SECURITY

Privacy protection law in Germany is quite strict, privacy protection law in other

countries is different, in some case it is less strict. Our customers originate

from Germany, they require German privacy protection law to be applied.

Privacy protection applied on services having their head office outside of

Germany cannot be granted to be compatible with the German law. When

using cloud services from outside Germany, we have to make sure that we can

grant privacy protection as of German law.

98 Variable, see http://en.wikipedia.org/wiki/Variable_%28computer_science%29 (Wikipedia)
99 Stack, see http://en.wikipedia.org/wiki/Stack_%28abstract_data_type%29 (Wikipedia)
100Boilerplate, see http://en.wikipedia.org/wiki/Boilerplate_code (Wikipedia)
101CLI, see http://en.wikipedia.org/wiki/Command-line_interface (Wikipedia)
102Undo, see http://en.wikipedia.org/wiki/Undo (Wikipedia)

http://en.wikipedia.org/wiki/Undo
http://en.wikipedia.org/wiki/Command-line_interface
http://en.wikipedia.org/wiki/Boilerplate_code
http://en.wikipedia.org/wiki/Stack_(abstract_data_type)
http://en.wikipedia.org/wiki/Variable_(computer_science)

25

We identify the following constraints: We have to store big data in the

untrusted cloud in a “secure” though fast manner. We also have to retrieve big

data in a “secure” though fast manner from the untrusted cloud. Decryption

parts and encryption parts are to be strictly separated from each other to

enable operation of physically separated encryption (untrusted cloud) and

decryption (“secure” data center) systems.

We choose a public-key (PK) cryptography103 approach (asymmetric encryption)

combined with a symmetric-key algorithm104 (symmetric cryptography) to store

data in the cloud and decrypt it in a “secure” data center out of the untrusted

cloud. A mechanism somehow similar to the forward secrecy105.

As of performance issues, the asymmetric keys generated by the “secure” data

center are only used to negotiate symmetric-key algorithm's ciphers with the

cloud, the ciphers are used to encrypt and decrypt the actual data (which is

much faster than an asymmetric encryption approach is being capable of):

Encrypting parts are to generate their ciphers (for encryption and decryption)

by themselves, in-memory, volatile and exclusively for their own (in-memory)

use, encryption must not persist ciphers. Decryption parts are to use the

(decrypted) ciphers only in-memory, volatile and exclusively for their own (in-

memory) use. The ciphers are transferred from the cloud to the “secure” data

center – being encrypted using the public part of the asymmetric keys

(provided by the “secure” data center).

The cloud only knows of public keys and generates ciphers encrypted with the

public keys from the “secure” data centers. The “secure” data center has

access to the private keys for decrypting the ciphers which are used to decrypt

data from the cloud. The ciphers generated in the cloud change continuously,

the ciphers are volatile and only locally visible in the encryption and the

decryption context.

To protect from disclosed encryption ciphers, the encryption ciphers change

103PK cryptography, see http://en.wikipedia.org/wiki/Public-key_cryptography (Wikipedia)
104Symmetric encryption, see http://en.wikipedia.org/wiki/Symmetric_encryption (Wikipedia)
105Forward secrecy, see http://en.wikipedia.org/wiki/ F orward_secrecy (Wikipedia)

http://en.wikipedia.org/wiki/Forward_secrecy
http://en.wikipedia.org/wiki/Forward_secrecy
http://en.wikipedia.org/wiki/Forward_secrecy
http://en.wikipedia.org/wiki/Symmetric_encryption
http://en.wikipedia.org/wiki/Public-key_cryptography

26

continuously: In case of disclosed ciphers, only the portion of the data actually

encrypted with the disclosed cipher is affected, minimizing the extend of

affected data.

7 scribbles the security architecture: Steps 1.1 through 1.10 illustrate the

public key and cipher exchange. Steps 2.1 through 2.5 illustrate the data

encryption process. Step 2.4 represents the logger system (as of 5) and steps

3.1 through 3.3 illustrate data decryption. Note steps 1.4, 1.8 and 2.5 which

denote the only data possibly disclosed as of being exchanged between the the

Figure 7: The security concept's cipher and data exchange in detail

27

participating software systems; being the cloud and the data center.

Decryption and storage of critical data must only take place in the data centers

outside the cloud, preferably hosted in the country whose privacy protection

law is to be applied and by a company having its head office in that country.

Excursus: Forward secrecy

“... In cryptography, forward secrecy … is a property of key-agreement
protocols ensuring that a session key derived from a set of long-term keys
cannot be compromised if one of the long-term keys is compromised in the
future. The key used to protect transmission of data must not be used to
derive any additional keys, and if the key used to protect transmission of
data is derived from some other keying material, then that material must not
be used to derive any more keys. In this way, compromise of a single key
permits access only to data protected by that single key...”.103 (Wikipedia)

Having said this, the key exchange used for this case study aims at the same
goal: Disclosure of a single cipher does not compromise all data, it just
compromises the data being encrypted with that given cipher. By changing
ciphers in high frequency as well as changing key pairs in less high frequency
(as it is quite “expensive” in terms of computing time), we assume that
disclosure of a single cipher is strictly limited to the data being encrypted
with the compromised cipher.

This concept has not been challenged seriously, consider it as “work in

progress”. “Security” is an ever evolving topic, you can never consider to be

finished with handling “security” issues. Usually each concept can be

challenged or enhanced. For example, critical data can by completely

physically separated from harmless data, critical (even encrypted) data never

finding its way into the cloud. Automation of public key handshake is another

issue looking for enhancements.

 11. HERDING CATS: RESOURCE MANAGEMENT

In the sections above, we discussed topics such as scalability and “security”. As

we operate the software system in the cloud, we are to manage three related

entities to keep the software system up and running:

a) Tenants, operating the attached webshops.

28

b) Machines, being the hardware running the services for the tenants.

c) Services, being the software executed for the tenants on the machines.

One changing entity affects the other two entities. In case the number of

tenants increases, additional machines might be required for hosting the

services, all of which assigned to according tenants. In case the number of

tenants decreases, machines might get consolidated and services got to be

shut down to save costs. Depending on tenants' individual requirements, they

might have varying kinds of services to be operated with individual

configuration parameters. This kind of herding cats requires a management

tool for all participating sub-systems to know ”what” (services) they “where”

(machines) are to run for ”whom” (tenants).

This leads to the decision to design an inventory using the repository pattern106

being applied. The inventory makes use of a classic relational database

management system. In this case we use a MySQL107 database – as of required

referential integrity108.

Excursus: Repository pattern

“... The repository regarding the repository pattern denotes a central
memory component accessed by different clients. It is used to store common
(shared) data to the clients and may act as an asynchronous communication
means between the clients ...“106.

In this case study, the inventory represents the repository, the clients109 are
represented by the services which share the inventory's data. The services
actually share their view of the inventory's data. The inventory relates
tenants, machines and services to each other: From these relationships a
service's dedicated view can be retrieved from the inventory in terms of
“configuration data of a service for a tenant on a machine”.

We are to keep track of the tenants, the services subscribed by the tenants and

the allocation of the tenants' services to the the machines. Along the way, we

store configuration information on various combinations of tenants, services

106Repository pattern, see http://01798.cosmonode.de/index.php/Repository_pattern
107MySQL, see http://en.wikipedia.org/wiki/MySQL (Wikipedia)
108Referential integrity, see http://en.wikipedia.org/wiki/Referential_integrity (Wikipedia)
109Client, see http://en.wikipedia.org/wiki/Client_%28computing%29 (Wikipedia)

http://en.wikipedia.org/wiki/Client_(computing)
http://en.wikipedia.org/wiki/Referential_integrity
http://en.wikipedia.org/wiki/MySQL
http://01798.cosmonode.de/index.php/Repository_pattern

29

and machines. E.g. the configuration of a service for different tenants differs or

the configuration of a service depends on the machine it is deployed on.

The inventory actually stores the information on which front controller is

responsible for which tenants. It also stores the information on which

composite logger is claimed by that tenant including the SimpleDB domains

being assigned to that composite logger.

See 8 for a simplified entity–relationship model110 (ER model) of the inventory:

The crow's feet of the relations denote a “one to many” relationship whereas

the opposite end of the relation denotes an “exactly one” relationship.

 12. SOFTWARE DESIGN AND IMPLEMENTATION

To finish off, some words are to be said on software design, implementation and

scalability; affecting all of the above mentioned software systems. I will

intensify on asynchronous calls, interface based programming, big data

110ER model, see http://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model
(Wikipedia)

Figure 8: A simplified entity–relationship model of the inventory

http://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model

30

processing, application assembly or pattern and refactoring111.

 1. Asynchronous calls

Implementing asynchronous methods is especially useful to grant quick

response times; not blocking the caller's thread112. Usually them are applicable

when your method being called has to return immediately and just has to

trigger an operation while not caring for the operation's result – as it is not

passed back to the caller.

To avoid blocking your thread when triggering that operation, you somehow

have to decouple your thread from the actual operation's execution, so that

your thread quickly can pass back control to the caller. In the context of (web)

application servers, the HTTP request / response cycle should be very quick.

Node.js113 for example propagates the asynchronous paradigm in its server

design. Java as well provides neat means meeting asynchronous requirements.

For the logger system to respond quickly when being invoked, the log process

is taking log data and returns immediately while writing it asynchronously to

the data sinks. A Java Servlet's request thread passed to the front controller is

not blocked while request data is being persisted by the logger system. The

Java Concurrency Utilities114 provide us with blocking queues115 used for

asynchronous logging and executor services116 for managing thread creation in

an application server conforming way.

 2. Interface based programming

I regard interfaces between components a vital part in software engineering117,

I prefer a good interface to a good implementation. Why? A good interface

hides bad code from depending components. The impact of bad code to be

111Code refactoring, see http://en.wikipedia.org/wiki/Code_refactoring (Wikipedia)
112Thread, see http://en.wikipedia.org/wiki/Thread_%28computing%29 (Wikipedia)
113Node.js, see http://en.wikipedia.org/wiki/Node.js (Wikipedia)
114Java concurrency Utilities, see http://docs.oracle.com/javase/7/docs/technotes/guides/

concurrency (Oracle)
115Interface BlockingQueue, see http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/

BlockingQueue.html (Oracle)
116Interface ExecutorService, see http://docs.oracle.com/javase/7/docs/api/java/util/

concurrent/ExecutorService.html (Oracle)
117Software engineering, see http://en.wikipedia.org/wiki/Software_engineering (Wikipedia)

http://en.wikipedia.org/wiki/Software_engineering
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ExecutorService.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ExecutorService.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ExecutorService.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/BlockingQueue.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/BlockingQueue.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/BlockingQueue.html
http://docs.oracle.com/javase/7/docs/technotes/guides/concurrency
http://docs.oracle.com/javase/7/docs/technotes/guides/concurrency
http://docs.oracle.com/javase/7/docs/technotes/guides/concurrency
http://en.wikipedia.org/wiki/Node.js
http://en.wikipedia.org/wiki/Thread_(computing)
http://en.wikipedia.org/wiki/Code_refactoring

31

refactored behind a good interface is locally isolated whereas changing a bad

interface affects depending components globally as well as their

implementations. Therefore attention is to be paid regarding interfaces and

keep in mind that interfaces are provided and used. Each interface implies

interface partners with whom to negotiate a good interface. Interface based

programming takes account of this.

A side effect is the decoupling of your depending components from specific

implementations, making it easy to replace a specific NoSQL database with

another technology.

Excursus: Interface based programming

“Modular Programming defines the application as a collection of intercoupled
modules … Interface Based Programming adds more to modular
Programming in that it insists that Interfaces are to be added to these
modules. The entire system is thus viewed as Components and the interfaces
that helps them to coact.”.23 (Wikipedia)

Actually most design patterns require you to use interfaces in order to apply
them patterns. The role an interface has in a software system depends on the
point of view; it depends whether your component defines the interfaces for
attached components by itself or whether it uses the interfaces of provided
components (yes, that makes the difference). Interfaces are engineered
differently when a layered architecture118 (use given interfaces) is being
applied than when a ports and adapters119 architecture (define your own
interfaces) is being applied.

As of moving targets in the use case's scope, interface based programming
helps us to cope with changes and changing technologies without breaking
neither the components nor the software system. Impacts are limited locally
to dedicated components to be recoded or replaced.

 3. Big data processing

Why did we not use a MapReduce120 framework such as Apache's Hadoop121?

MapReduce implies to put your algorithm where your data is. Frameworks such

118Mulitlayerd architecture, see http://en.wikipedia.org/wiki/Multilayered_architecture
(Wikipedia)

119Hexagonal architecture , see http://alistair.cockburn.us/Hexagonal+architecture (Alistair
Cockburn)

120MapReduce, see http://en.wikipedia.org/wiki/MapReduce (Wikipedia)
121Apache Hadoop, see http://en.wikipedia.org/wiki/Apache_Hadoop (Wikipedia)

http://en.wikipedia.org/wiki/Apache_Hadoop
http://en.wikipedia.org/wiki/MapReduce
http://alistair.cockburn.us/Hexagonal+architecture
http://en.wikipedia.org/wiki/Multilayered_architecture

32

as Hadoop expect the big data to be processed to reside in big flat files. In our

case study, small chunks of data drop into the front controller: Here we do pre-

processing and normalization of the HTTP requests. As we already have small

chunks of structured data we do the processing where the data is dropped (that

is also an aim of MapReduce). The data as we get it from the front controller is

exactly what we need in our logger system and the succeeding steps, there is

no need to generate a big flat file which then is being processed in chunks (we

do processing in many front controllers beforehand or in parallel succeeding

steps). Succeeding steps working with the logger system can be highly

parallelized, having many tasks doing the succeeding processing. Probably the

logger system is the conceptual counterpart of the Hadoop distributed file

system (HDFS).

Excursus: Big data housekeeping

Big data means that you have to do housekeeping122 for your collected data.
Storing data costs money, querying data costs time. To work efficiently with
your big data you must have a clear understanding of the life cycle of your
data and a strategy to cope with it: You may refine and consolidate it through
several steps of a processing pipeline, ending up in the end with consolidated
data to keep; so being able to throw away the raw data of the beginning of
your refinement pipeline. Not having a strategy will make you end up with
problems; as refinement afterwards has to keep up with incoming data...

 4. Application assembly

As of strictly applying interface based programming, we are free to change the

implementation of parts of our software system. We might consider SimpleDB

not fitting new requirements regarding quality of service123 applied to database

management systems. We might want to switch to Amazon's DynamoDB (“... a

service based on throughput, rather than storage ...”)124.

We use Spring's dependency injection mechanism throughout all parts of the

IPO Model to glue together the software system. As of interface based

programming we easily can provide an atomic logger using DynamoDB instead

122Housekeeping, see http://en.wikipedia.org/wiki/Housekeeping_%28computing%29
123Quality of service, see http://en.wikipedia.org/wiki/Quality_of_service (Wikipedia)
124DynamoDB, see http://en.wikipedia.org/wiki/DynamoDB (Wikipedia)

http://en.wikipedia.org/wiki/DynamoDB
http://en.wikipedia.org/wiki/Quality_of_service
http://en.wikipedia.org/wiki/Housekeeping_(computing)

33

of SimpleDB. To actually assemble the software system to use DynamoDB, we

just have to reconfigure one spot in our Spring configuration.

 5. Pattern and refactoring

As soon as a part of the software system begins to mutate in a bad way, having

god class125 delusions of grandeur or monster method ambitions, it's time to do

some refactoring. There are quite a few refactoring techniques out there126.

Please keep in mind when refactoring on how you best prevent the code smell

in the future. Just resolving the symptoms won’t fix the root cause:

When breaking down a god class or a monster method, think of a design

pattern which will prevent that kind of mutation in the future. The interceptor

pattern breaking down the front controller into maintainable bits and pieces

helps us to effectively prevent mutation of the front controller code.

 13. CONCLUSION

In the beginning of the session some questions were asked; let's take a look if

the paper gave some answers:

• “How to scale up and scale down your cloud resource consumption?”

We used the composite pattern to do so, having stateless atomic components

under the hood of our composite components makes it easy to increase or

decrease the throughput by increasing or deceasing the the number of atomic

components; provided that the atomic components do not share a bottleneck127

and provided that our composite components can operate in parallel as well.

• “Which technology stack works promisingly well? ”

We use cloud services and NoSQL databases for getting throughput. Java

provides us with a rich ecosystem full of possibilities. Relational databases are

used for data requiring referential integrity without the requirement of high

throughput. This technology stack works very well for us. This does not mean

125God object, see http://en.wikipedia.org/wiki/God_object (Wikipedia)
126Refactoring Auswahl, see http://01853.cosmonode.de/index.php/Refactoring-Auswahl
127Bottleneck, see http://en.wikipedia.org/wiki/Bottleneck (Wikipedia)

http://en.wikipedia.org/wiki/Bottleneck
http://01853.cosmonode.de/index.php/Refactoring-Auswahl
http://en.wikipedia.org/wiki/God_object

34

that other technologies wouldn't do the job.

• “Which design patterns and software architectures are suitable? ”

For us, using the composite pattern in combination with asynchronous

operations works out to get the throughput we need. Think stateless to be able

to easily parallelize your components and prevent monolithic systems. Make

sure that in your architecture there is not one bottleneck which you cannot not

scale up. In this case study, just using composite loggers would not have done

the job; the parted logger utilizes the scalability we need.

• “How to populate and organize your systems in this dynamic

environment without loosing track?”

We use the inventory with its referential integrity based on the repository

pattern to keep track on the interdependencies between machines, services

and tenants. The inventory actually reflects the software systems' state in the

real world.

• “How to retain a clear view of your services' and systems' health

condition?”

We have luck, our logger system is perfectly well suited to be used as a system

logger, similar to syslog, though as of its distributed though centralized

manner, we can use it for automatic system health and system load monitoring

of distributed cloud services ...

 14. OUTLOOK

Currently I am working on a project evaluating promising architectural trends.

An interesting concept is that of microservices128. The inventory is a candidate

to be bundled as a microservice.

Amazon's Elastic Beanstalk129 service is another interesting candidate to get rid

of the Elastic Cloud Computing instances and deploy the front controllers

128Microservices, see http://microservices.io/patterns/microservices.html (Microservice
architecture)

129AWS Elastic Beanstalk, see http://en.wikipedia.org/wiki/AWS_Elastic_Beanstalk (Wikipedia)

http://en.wikipedia.org/wiki/AWS_Elastic_Beanstalk
http://microservices.io/patterns/microservices.html

35

directly into the Elastic Beanstalk service.

Outlook: Cloud API (CAPI)

First there was SaaS (Software as a Service), then there came PaaS (Platform
as a Service). SaaS represents full blown web applications whereas PaaS
represents low level web services – all of which can be accessed via the
internet. The former is operated by users, the latter is invoked by software
systems. Between SaaS and PaaS there seems to be a gap. The gap should
be filled by something more specific (less generic) than PaaS and less specific
(more generic) than SaaS ...

It looks to me that there is a demand on cloud services providing ready to use
APIs130 (Application Programming Interfaces) as REST services. This could be
called something like “Cloud API” (CAPI) and fill that gap.

… CAPI would be a cloud hosted131 application domain132 centric API ...

CAPI is more specific (less generic) than a PaaS file storage133 service (such
as Amazon S3134) or a PaaS database service. CAPS is less specific (more
generic) than a SaaS webshop or a SaaS social networking service135 (such as
Facebook136). CAPI would be part of a software system and not be the
software system itself, whereas SaaS is the software system. CAPI would
provide business logic137 whereas PaaS is merely invoked by business logic.

An example for a CAPI could be some kind of directory service138: Users and
groups, rights and roles, workspace and invitation management as well as
notification and push functionality could be provided by a CAPI's REST
interface. Programmers can concentrate on the development of their mobile
apps139 running on smartphones140 by simply subscribing such a CAPI and
connect their mobile app with that CAPI via REST. Such a mobile app could
cover working groups141 or multiplayer142 business cases without the hassle
for the programmer to take care of the back end143 systems managing the
mobile app's community. Another CAPI candidate seems to be the inventory.

A CAPI would be fully set up by the internet service provider144 (ISP) and be
ready to use by any programmer. The technology stack required to get the
API up and running would be hidden by the CAPI and managed by the ISP. The
ISP would take care of hosting, backup145 and data recovery146.

In order to monitor all participating software systems in the cloud environment,

a plan could be using the logger system not only to protocol a customer's

journey. Furthermore a separate instance of the logger system may act as a

130API, see http://en.wikipedia.org/wiki/Application_programming_interface (Wikipedia)
131Hosting service, see http://en.wikipedia.org/wiki/Internet_hosting_service (Wikipedia)

http://en.wikipedia.org/wiki/Internet_hosting_service
http://en.wikipedia.org/wiki/Application_programming_interface

36

system logger, similar to syslog147, providing centralized means to inspect the

system logs with cool querying features (similar but different to Splunk148).

 15. EPILOGUE

Probably the main driver of getting a great challenge done is the lack of

respect for that challenge. Creativity and a sound background of knowledge

does no harm neither. Try to get the best compromise you can get under your

given circumstances and constraints (unless you are working for one of the big

and innovative IT companies around providing you with the best team, the best

equipment, the best support and enough time and money). Trying to get the

100% best solution will most probably make you fail. A solution being 100% the

best from one point of view often has shortcomings seen from another point of

view. Getting those competitive goals into one solution is quite impossible (as

the word “competitive” already suggests). In the past, some good work has

only been finished because of time constraints – Black Sabbath's149 debut

album has been recorded within twelve hours150 and is said to be one of the

milestones in Heavy Metal151. Having infinite time you might search for the

100% solution and will never find it …

132Domain, see http://en.wikipedia.org/wiki/Domain_%28software_engineering%29 (Wikipedia)
133File system, see http://en.wikipedia.org/wiki/File_system (Wikipedia)
134Amazon S3, see http://en.wikipedia.org/wiki/Amazon_S3 (Wikipedia)
135Social networking service, see http://en.wikipedia.org/wiki/Social_networking_service

(Wikipedia)
136Facebook, see http://en.wikipedia.org/wiki/Facebook (Wikipedia)
137Business logic, see http://en.wikipedia.org/wiki/Business_logic (Wikipedia)
138Directory service, see http://en.wikipedia.org/wiki/Directory_service (Wikipedia)
139Mobile app, see http://en.wikipedia.org/wiki/Mobile_app (Wikipedia)
140Smartphone, see http://en.wikipedia.org/wiki/Smartphone (Wikipedia)
141Working group, see http://en.wikipedia.org/wiki/Working_group (Wikipedia)
142Multiplayer, see http://en.wikipedia.org/wiki/Multiplayer_video_game (Wikipedia)
143Front and back ends, see http://en.wikipedia.org/wiki/Front_and_back_ends (Wikipedia)
144ISP, see http://en.wikipedia.org/wiki/Internet_service_provider (Wikipedia)
145Backup, see http://en.wikipedia.org/wiki/Backup (Wikipedia)
146Data recovery, see http://en.wikipedia.org/wiki/Data_recovery (Wikipedia)
147Syslog, see http://en.wikipedia.org/wiki/Syslog (Wikipedia)
148Splunk, see http://en.wikipedia.org/wiki/Splunk (Wikipedia)
149Black Sabbath, see http://en.wikipedia.org/wiki/Black_sabbath (Wikipedia)
150As of MTV Masters Ozzy Osbourne / Black Sabbath, see http://de.wikipedia.org/wiki/Black _

Sabbath#cite_ref-9 (Wikipedia)
151Heavy metal music, see http://en.wikipedia.org/wiki/Heavy_metal_music (Wikipedia)

http://en.wikipedia.org/wiki/Heavy_metal_music
http://de.wikipedia.org/wiki/Black_Sabbath#cite_ref-9
http://de.wikipedia.org/wiki/Black_Sabbath#cite_ref-9
http://de.wikipedia.org/wiki/Black_Sabbath#cite_ref-9
http://en.wikipedia.org/wiki/Black_sabbath
http://en.wikipedia.org/wiki/Splunk
http://en.wikipedia.org/wiki/Syslog
http://en.wikipedia.org/wiki/Data_recovery
http://en.wikipedia.org/wiki/Backup
http://en.wikipedia.org/wiki/Internet_service_provider
http://en.wikipedia.org/wiki/Front_and_back_ends
http://en.wikipedia.org/wiki/Multiplayer_video_game
http://en.wikipedia.org/wiki/Working_group
http://en.wikipedia.org/wiki/Smartphone
http://en.wikipedia.org/wiki/Mobile_app
http://en.wikipedia.org/wiki/Directory_service
http://en.wikipedia.org/wiki/Business_logic
http://en.wikipedia.org/wiki/Facebook
http://en.wikipedia.org/wiki/Social_networking_service
http://en.wikipedia.org/wiki/Amazon_S3
http://en.wikipedia.org/wiki/File_system
http://en.wikipedia.org/wiki/Domain_(software_engineering)

37

ABOUT THE AUTHOR

My name is Siegfried Steiner; born in Hannover (Germany) I spent some
years as a teenager in Zimbabwe. I studied computer science in Munich
where I now live. Currently I am working for an online bank as senior
manager focussing on software architecture in an agile team. In the past I
have been responsible for the product development dedicated to big data
processing and cloud computing. Previous engagements also addressed
issues such as mobile computing152, scalability or peer-to-peer153. Areas of
interest are to get some open source ideas up and running. For about 15
years I have been working as a computer scientist now and so was able to
build up some know-how ...

152Mobile computing, see http://en.wikipedia.org/wiki/Mobile_computing (Wikipedia)
153Peer-to-peer, see http://en.wikipedia.org/wiki/Peer-to-peer (Wikipedia)

http://en.wikipedia.org/wiki/Peer-to-peer
http://en.wikipedia.org/wiki/Mobile_computing

38

List of figures
Figure 1: A rough impression on the mission's set-up...5
Figure 2: A high level overview of the system landscape....................................9
Figure 3: The IPO Model in general, being applied to the software system.......12
Figure 4: The Input step of the IPO Model in detail..15
Figure 5: The Process step of the IPO Model in detail..19
Figure 6: The Output step of the IPO Model in detail...23
Figure 7: The security concept's cipher and data exchange in detail................26
Figure 8: A simplified entity–relationship model of the inventory......................29

	1. Preface
	2. Abstract
	3. The mission
	4. Terminology
	5. Constraints
	6. Approach
	7. Technology stack
	8. Development process
	Excursus: Scrum
	Excursus: Test-driven development

	9. Into the cloud: Scalability
	Excursus: IPO Model
	1. Input - Receive requests (and process output)
	Excursus: Front controller pattern
	Excursus: Interceptor pattern

	2. Process – Log and store
	Excursus: Composite pattern
	Excursus: Partitioning and composition strategies

	3. Output – Query and retrieve
	Excursus: Command pattern

	10. … and out of the cloud: Security
	Excursus: Forward secrecy

	11. Herding cats: Resource management
	Excursus: Repository pattern

	12. Software design and implementation
	1. Asynchronous calls
	2. Interface based programming
	Excursus: Interface based programming

	3. Big data processing
	Excursus: Big data housekeeping

	4. Application assembly
	5. Pattern and refactoring

	13. Conclusion
	14. Outlook
	Outlook: Cloud API (CAPI)

	15. Epilogue

